Углеводный обмен регулируется гормоном. Гормон поджелудочной железы регулирующий обмен углеводов. Гормоны поджелудочной железы

02.01.2021

Регуляция углеводного обмена осуществляется на всех его этапах нервной системой и гормонами. Помимо этого, активность ферментов отдельный путей метаболизма углеводов регулируется по принципу «обратной связи», в основе которого лежит аллостерический механизм взаимодействия фермента с эффектором. Регуляция углеводного обмена осуществляется на всех его этапах нервной системой и гормонами. Помимо этого, активность ферментов отдельный путей метаболизма углеводов регулируется по принципу «обратной связи», в основе которого лежит аллостерический механизм взаимодействия фермента с эффектором. К аллостерическим эффекторам можно отнести конечные продукты реакции, субстраты, некоторые метаболиты, адениловые мононуклеотиды. Важнейшую роль в направленности углеводного обмена (синтез или распад углеводов) играет соотношение коферментов НАД + / НАДН∙Н + и энергетический потенциал клетки.

Постоянство уровня глюкозы в крови – важнейшее условие поддержания нормальной жизнедеятельности организма. Нормогликемия является результатом слаженной работы нервной системы, гормонов и печени.

Печень – единственный орган, депонирующий глюкозу (в виде гликогена) для нужд всего организма. Благодаря активной фосфатазе глюкозо-6-фосфата гепатоциты способны образовывать свободную глюкозу, которая, в отличие от её фосфорилированных форм, может проникать через мембрану клеток в общий круг кровообращения.

Из гормонов выдающуюся роль играет инсулин . Инсулин оказывает свое действие только на инсулинзависимые ткани, прежде всего, на мышечную и жировую. Мозг, лимфатическая ткань, эритроциты относятся к инсулиннезависимым. В отличие от других органов, действие инсулина не связано с рецепторными механизмами его влияния на метаболизм гепатоцитов. Хотя глюкоза свободно проникает в печёночные клетки, но это возможно только при условии повышенной её концентрации в крови. При гипогликемии, напротив, печень отдаёт глюкозу в кровь (даже несмотря на высокий уровень инсулина в сыворотке).

Наиболее существенным действием инсулина на организм является снижение нормального или повышенного уровня глюкозы в крови – вплоть до развития гипогликемического шока при введении высоких доз инсулина. Уровень глюкозы в крови снижается в результате: 1. Ускорения поступления глюкозы в клетки. 2. Повышения использования глюкозы клетками.

1. Инсулин ускоряет поступление моносахаридов в инсулинзависимые ткани, особенно глюкозы (а также сахаров схожей конфигурации в положении С 1 -С 3), но не фруктозы. Связывание инсулина со своим рецептором на плазматической мембране приводит к перемещению запасных белков-переносчиков глюкозы (глют 4 ) из внутриклеточных депо и включению их в мембрану.


2. Инсулин активирует использование клетками глюкозы путём:

· активирования и индукции синтеза ключевых ферментов гликолиза (глюкокиназы, фосфофруктокиназы, пируваткиназы).

· Увеличения включения глюкозы в пентозофосфатный путь (активирование дегидрогеназ глюкозо-6-фосфата и 6-фосфоглюконата).

· Повышения синтеза гликогена за счёт стимуляции образования глюкозо-6-фосфата и активирования гликогенсинтазы (одновременно инсулин ингибирует гликогенфосфорилазу).

· Торможения активности ключевых ферментов глюконеогенеза (пируваткарбоксилазы, фосфоенолПВКкарбоксикиназы, бифосфатазы, глюкозо-6-фосфатазы) и реп-рессии их синтеза (уставлен факт репрессии гена фосфоенолПВКкарбоксикиназы).

Другие гормоны, как правило, способствуют увеличению содержания глюкозы в крови.

Глюкагон и адреналин приводят к росту гликемии путём активации гликогенолиза в печени (активирование гликогенфосфорилазы), однако в отличие от адреналина глюкагон не влияет на гликогенфосфорилазу мышц . Кроме того, глюкагон активирует глюконеогенез в печени, следствием чего также является увеличение концентрации глюкозы в крови.

Глюкокортикоиды способствуют повышению уровня глюкозы в крови за счёт стимуляции глюконеогенеза (ускоряя катаболизм белков в мышечной и лимфоидной тканях, эти гормоны увеличивают содержание в крови аминокислот, которые, поступая в печень, становятся субстратами глюконеогенеза). Кроме того, глюкокортикоиды препятствуют утилизации глюкозы клетками организма.

Гормон роста вызывает увеличение гликемии опосредованно: стимулируя распад липидов, он приводит увеличению уровня жирных кислот в крови и клетках, снижая тем самым потребность последних в глюкозе (жирные кислоты – ингибиторы использования глюкозы клетками).

Тироксин, особенно вырабатываемый в избыточных количествах при гиперфункции щитовидной железы, также способствует повышению уровня глюкозы в крови (за счёт увеличения гликогенолиза).

При нормальном уровне глюкозы в крови почки полностью её реабсорбируют и сахар в моче не определяется. Однако если гликемия превышает 9-10 ммоль/л (почечный порог ), то появляется глюкозурия . При некоторых поражениях почек глюкоза может обнаруживаться в моче и при нормогликемии.

Проверка способности организма регулировать содержание глюкозы в крови (толерантность к глюкозе ) используется для диагностики сахарного диабета при постановке перорального глюкозо-толерантного теста:

Первая проба крови берётся натощак после ночного голодания. Затём больному в течение 5 мин. дают выпить раствор глюкозы (75г глюкозы, растворённой в 300 мл воды). После этого каждые 30 мин. на протяжении 2-х часов определяют содержание глюкозы в крови

По биологической химии

для студентов_____2-го_____ курса ___лечебного___________________факультета

Тема:___Углеводы 4. Патология углеводного обмена

Время__90 мин___________________

Учебная цель:

1.Сформировать представления о молекулярных механизмах основных нарушений углеводного обмена.

ЛИТЕРАТУРА

1.Биохимия человека:, Р.Марри, Д.Греннер, П.Мейес, В.Родуэлл.- М.книга,2004.- т.1.с..

2.Основы биохимии:А.Уайт, Ф.Хендлер,Э.Смит, Р.Хилл, И.Леман.-М. книга,

1981,т. -.2,.с. 639- 641,

3.Наглядная биохимия: Кольман., Рем К.-Г-М.книга 2004г.

4.Биохимические основы...под. ред. член- корр. РАН Е.С. Северина. М.Медицина,2000.-с.179-205.

МАТЕРИАЛЬНОЕ ОБЕСПЕЧЕНИЕ

1.Мультимедийная презентация

РАСЧЕТ УЧЕБНОГО ВРЕМЕНИ

10852 0

Основные энергетические ресурсы живого организма — углеводы и жиры обладают высоким запасом потенциальной энергии, легко извлекаемой из них в клетках с помощью ферментных катаболических превращений. Энергия, высвобождаемая в процессе биологического окисления продуктов углеводного и жирового обменов, а также гликолиза, превращается в значительной степени в химическую энергию фосфатных связей синтезируемого АТФ.

Аккумулированная же в АТФ химическая энергия макроэргических связей, в свою очередь, расходуется на разного вида клеточную работу — создание и поддержание электрохимических градиентов, сокращение мышц, секреторные и некоторые транспортные процессы, биосинтез белка, жирных кислот и т.д. Помимо «топливной» функции углеводы и жиры наряду с белками выполняют роль важных поставщиков строительных, пластических материалов, входящих в основные структуры клетки, — нуклеиновых кислот, простых белков, гликопротеинов, ряда липидов и т.д.

Синтезируемая благодаря распаду углеводов и жиров АТФ не только обеспечивает клетки необходимой для работы энергией, но и является источником образования цАМФ, а также участвует в регуляции активности многих ферментов, состояния структурных белков, обеспечивая их фосфорилирование.

Углеводными и липидными субстратами, непосредственно утилизируемыми клетками, являются моносахариды (прежде всего глюкоза) и неэстерифицированные жирные кислоты (НЭЖК), а также в некоторых тканях кетоновые тела. Их источниками служат пищевые продукты, всасываемые из кишечника, депонированные в органах в форме гликогена углеводов и в форме нейтральных жиров липиды, а также неуглеводные предшественники, в основном аминокислоты и глицерин, образующие углеводы (глюконеогенез).

К депонирующим органам у позвоночных относятся печень и жировая (адипозная) ткань, к органам глюконеогенеза — печень и почки. У насекомых депонирующим органом является жировое тело. Кроме этого, источниками глюкозы и НЭЖК могут быть и некоторые запасные или другие продукты, хранящиеся или образующиеся в работающей клетке. Разные пути и стадии углеводного и жирового обменов взаимосвязаны многочисленными взаимовлияниями. Направление и интенсивность течения этих обменных процессов находятся в зависимости от ряда внешних и внутренних факторов. К ним относятся, в частности, количество и качество потребляемой пищи и ритмы ее поступления в организм, уровень мышечной и нервной деятельности и т.д.

Животный организм адаптируется к характеру пищевого режима, к нервной или мышечной нагрузке с помощью сложного комплекса координирующих механизмов. Так, контроль течения различных реакций углеводного и липидного обменов осуществляется на уровне клетки концентрациями соответствующих субстратов и ферментов, а также степенью накопления продуктов той или иной реакции. Эти контролирующие механизмы относятся к механизмам саморегуляции и реализуются как в одноклеточных, так и в многоклеточных организмах.

У последних регуляция утилизации углеводов и жиров может происходить на уровне межклеточных взаимодействий. В частности, оба вида обмена реципрокно взаимоконтролируются: НЭЖК в мышцах тормозят распад глюкозы, продукты же распада глюкозы в жировой ткани тормозят образование НЭЖК. У наиболее высокоорганизованных животных появляется особый межклеточный механизм регуляции межуточного обмена, определяемый возникновением в процессе эволюции эндокринной системы, имеющей первостепенное значение в контроле метаболических процессов целого организма.

Среди гормонов, участвующих в регуляции жирового и углеводного обменов у позвоночных, центральное место занимают следующие: гормоны желудочно-кишечного тракта, контролирующие переваривание пищи и всасывание продуктов пищеварения в кровь; инсулин и глюкагон — специфические регуляторы межуточного обмена углеводов и липидов; СТГ и функционально связанные с ним «соматомедины» и СИФ, глкжокортикоиды, АКТГ и адреналин — факторы неспецифической адаптации. Следует отметить, что многие названные гормоны принимают также непосредственное участие и в регуляции белкового обмена (см. гл. 9). Скорость секреции упомянутых гормонов и реализация их эффектов на ткани взаимосвязаны.

Мы не можем специально останавливаться на функционировании гормональных факторов желудочно-кишечного тракта, секретируемых в нервно-гуморальную фазу сокоотделения. Их главные эффекты хорошо известны из курса общей физилогии человека и животных и, кроме того, о них уже достаточно полно упоминалось в гл. 3. Более подробно остановимся на эндокринной регуляции межуточного метаболизма углеводов и жиров.

Гормоны и регуляция межуточного углеводного обмена. Интегральным показателем баланса обмена углеводов в организме позвоночных является концентрация глюкозы в крови. Этот показатель стабилен и составляет у млекопитающих примерно 100 мг% (5 ммоль/л). Его отклонения в норме обычно не превышают ±30%. Уровень глюкозы в крови зависит, с одной стороны, от притока моносахарида в кровь преимущественно из кишечника, печени и почек и, с другой — от его оттока в работающие и депонирующие ткани (рис. 95).


Рис. 95. Пути поддержания динамического баланса глюкозы в крови
Мембраны мышечных и адилозных клеток имеют «барьер» для транспорта глюкозы; Гл-6-ф — глюкозо-6-фосфат


Приток глюкозы из печени и почек определяется соотношением активностей гликогенфосфорилазной и гликогенсинтетазной реакции в печени, соотношением интенсивности распада глюкозы и интенсивности глюконеогенеза в печени и отчасти в почке. Поступление глюкозы в кровь прямо коррелирует с уровнями фосфорилазной реакции и процессов глюконеогенеза.

Отток глюкозы из крови в ткани находится в прямой зависимости от скорости ее транспорта в мышечные, адипозные и лимфоидные клетки, мембраны которых создают барьер для проникновения в них глюкозы (напомним, что мембраны клеток печени, мозга и почек легко проницаемы для моносахарида); метаболической утилизации глюкозы, в свою очередь зависимой от проницаемости к ней мембран и от активности ключевых ферментов ее распада; превращения глюкозы в гликоген в печеночных клетках (Левин и др., 1955; Ньюсхолм, Рэндл, 1964; Фоа, 1972).

Все эти процессы, сопряженные с транспортом и метаболизмом глюкозы, непосредственно контролируются комплексом гормональных факторов.

Гормональные регуляторы углеводного обмена по действию на общее направление обмена и уровень гликемии могут быть условно разделены на два типа. Первый тип гормонов стимулирует утилизацию глюкозы тканями и ее депонирование в форме гликогена, но тормозит глюконеогенез, и, следовательно, вызывает снижение концентрации глюкозы в крови.

Гормоном такого типа действия является инсулин. Второй тип гормонов стимулирует распад гликогена и глюконеогенез, а следовательно, вызывает повышение содержания глюкозы в крови. К гормонам этого типа относятся глюкагон (а также секретин и ВИП) и адреналин. Гормоны третьего типа стимулируют глюконеогенез в печени, тормозят утилизацию глюкозы различными клетками и, хотя усиливают образование гликогена гепатоцитами, в результате преобладания первых двух эффектов, как правило, также повышают уровень глюкозы в крови. К гормонам данного типа можно отнести глюкокортикоиды и СТГ — «соматомедины». Вместе с тем, обладая однонаправленным действием на процессы глюконеогенеза, синтеза гликогена и гликолиза, глюкокортикоиды и СТГ — «соматомедины» по-разному влияют на проницаемость мембран клеток мышечной и адипозной ткани к глюкозе.

По направленности действия на концентрацию глюкозы в крови инсулин является гипогликемическим гормоном (гормон «покоя и насыщения»), гормоны же второго и третьего типов — гипергликемическими (гормоны «стресса и и голодания») (рис. 96).



Рис 96. Гормональная регуляция углеводного гомеостаза:
сплошными стрелками обозначена стимуляция эффекта, пунктирными — торможение


Инсулин можно назвать гормоном усвоения и депонирования углеводов. Одной из причин усиления утилизации глюкозы в тканях является стимуляция гликолиза. Она осуществляется, возможно, на уровне активации ключевых ферментов гликолиза гексокиназы, особенно одной из четырех известных ее изоформ — гексокиназы II, и глюкокиназы (Вебер, 1966; Ильин, 1966, 1968). По-видимому, определенную роль в стимуляции катаболизма глюкозы инсулином играет и ускорение пентозофосфатного пути на стадии глюкозо-6-фосфатдегидрогеназной реакции (Лейтес, Лаптева, 1967). Считается, что в стимуляции захвата глюкозы печенью при пищевой гипергликемии под влиянием инсулина важнейшую роль играет гормональная индукция специфического печеночного фермента глюкокиназы, избирательно фосфорилирующего глюкозу при высоких ее концентрациях.

Главная причина стимуляции утилизации глюкозы мышечными и жировыми клетками — прежде всего избирательное повышение проницаемости клеточных мембран к моносахариду (Лунсгаард, 1939; Левин, 1950). Таким путем достигается повышение концентрации субстратов для гексокиназной реакции и пентозофосфатного пути.

Усиление гликолиза под влиянием инсулина в скелетных мышцах и миокарде играет существенную роль в накоплении АТФ и обеспечении работоспособности мышечных клеток. В печени усиление гликолиза, по-видимому, важно не столько для повышения включения пирувата в систему тканевого дыхания, сколько для накопления ацетил-КоА и малонил-КоА как предшественников образования многоатомных жирных кислот, а следовательно, и триглицеридов (Ньюсхолм, Старт, 1973).

Образующийся в процессе гликолиза глицерофосфат также включается в синтез нейтрального жира. Кроме того, и в печени, и особенно в адипозной ткани для повышения уровня липогенеза из глюкозы существенную роль играет стимуляция гормоном глюкозо-6-фосфатдегидрогеназной реакции, приводящей к образованию НАДФН — восстанавливающего кофактора, необходимого для биосинтеза жирных кислот и глицерофосфата. При этом у млекопитающих только 3-5% всасываемой глюкозы превращается в печеночной гликоген, а более 30% накапливается в виде жира, откладываемого в депонирующих органах.

Таким образом, основное направление действия инсулина на гликолиз и пентозофоофатный путь в печени и особенно в жировой клетчатке сводится к обеспечению образования триглицеридов. У млекопитающих и птиц в адипоцитах, а у низших позвоночных в гепатоцитах глюкоза — один из главных источников депонируемых триглицеридов. В данных случаях физиологический смысл гормональной стимуляции утилизации углеводов сводится в значительной мере к стимуляции депонирования липидов. Одновременно с этим инсулин непосредственно влияет на синтез гликогена — депонируемой формы углеводов — не только в печени, но и в мышцах, почке, и, возможно, жировой ткани.

Гормон оказывает стимулирующий эффект на гликогенообразование, повышая активность гликогенсинтетазы (переход неактивной D-формы в активную I-форму) и ингибируя гликогенфосфорилазу (переход малоактивной 6-формы в л-форму) и тем самым тормозя гликогенолиз в клетках (рис. 97). Оба эффекта инсулина на эти ферменты в печени опосредуются, по-видимому, активацией мембранной протеиназы, накоплением гликопептидов, активацией фосфодиэстеразы цАМФ.


Рис 97. Основные этапы гликолиза, глюконеогенеза и синтеза гликогена (по Ильину, 1965 с изменениями)


Еще одним важным направлением действия инсулина на углеводной обмен является торможение процессов глюконеогенеза в печени (Кребс, 1964; Ильин, 1965; Икстон и др., 1971). Торможение глюконеогенеза гормоном осуществляется на уровне снижения синтеза ключевых ферментов фосфоенолпируваткарбоксикиназы и фруктозо- 16-дифосфатазы. Эти эффекты опосредуются также повышением скорости образования гликопептидов — медиаторов гормона (рис. 98).

Глюкоза при любых физиологических состояниях — главный источник питания нервных клеток. При увеличении секреции инсулина происходит некоторое повышение потребления глюкозы нервной тканью, по-видимому, благодаря стимуляции в ней гликолиза. Однако при высоких концентрациях гормона в крови, вызывающих гипогликемию, возникает углеводное голодание мозга и торможение его функций.

После введения очень больших доз инсулина глубокое торможение мозговых центров может приводить сначала к развитию судорог, затем к потере сознания и падению кровяного давления. Такое состояние, возникающее при концентрации глюкозы в крови ниже 45-50 мг%, называют инсулиновым (гипогликемическим) шоком. Судорожную и шоковую реакцию на инсулин используют для биологической стандартизации препаратов инсулина (Смит, 1950; Стюарт, 1960).

24691 0

Если интегральным показателем уровня углеводного обмена в животном организме является концентрация глюкозы в крови, то аналогичным показателем интенсивности жирового обмена служит концентрация НЭЖК. В состоянии покоя она составляет в среднем 500-600 мкмоль/100 мл плазмы. Этот параметр зависит от соотношения скоростей липолиза и липосинтеза в жировой ткани и печени, с одной стороны, и потребления свободных жирных кислот в качестве источника энергии в мышцах и других тканях — с другой.

Углеводы утилизируются и мобилизуются в организме легче и равномернее, чем триглицериды. Поэтому уровень глюкозы в крови более стабилен, чем концентрация НЭЖК. Если концентрация глюкозы в крови колеблется ± 30%, то концентрация свободных жирных кислот в некоторых ситуациях (голодание, интенсивная мышечная нагрузка, сильный стресс) может возрастать до 500% (Ньюсхолм, Старт, 1973).

Столь значительное повышение уровня НЭЖК в крови объясняется тем, что скорости реакций липолиза резко превышают скорости реакций утилизации НЭЖК. И хотя НЭЖК утилизируются в некоторых тканях медленнее, чем глюкоза или другие моносахариды, они вполне доступны для окисления в фукционирующих тканях и являются поэтому в ряде физиологических ситуаций важнейшими и даже первостепенными энергетическими источниками для многих типов клеток, в частности скелетных мышц, при нехватке глюкозы.

В миокарде же НЭЖК — главные топливные продукты при любых условиях. В отличие от моносахаридов скорость потребления жирных кислот во всех тканях зависит от их концентрации в крови и не зависит от проницаемости к ним клеточных мембран (Итон, Стейнберг, 1961).

Регуляторами липолиза и липосинтеза служат в основном те же гормоны, которые принимают участие и в регуляции углеводного обмена. При этом гормоны, стимулирующие гипергликемию, являются и гиперлипацидемическими, в то время как инсулин, обладающий гипогликемическим действием, предотвращает развитие гиперлипацидемии. Кроме того, в регуляции жирового обмена у позвоночных некоторое участие принимают АКТГ, липотропин и МСГ, оказывающие гиперлипацидемическое действие (рис. 99).


Рис. 99. Мультигормональная регуляция липолиза и липосинтеза:


Инсулин — единственный гормональный стимулятор липогенеза и ингибитор липолиза. Стимуляция липосинтеза гормоном в жировой ткани, а также в печени происходит за счет усиления поглощения и утилизации глюкозы (см. выше). Торможение же липолиза происходит, пo-видимому, в результате активации инсулином фосфодиэстеразы цАМФ, снижения концентрации циклического нуклеотида, снижения скорости фосфорилирования малоактивной липазы и уменьшения концентрации активной формы фермента — липазы а (Корбин и др., 1970). Помимо этого, ингибирование липолиза в жировой ткани под действием инсулина осуществляется вследствие торможения гидролиза триглицеридов продуктами усиленного гормоном гликолиза.

Глюкагон, адреналин, СТГ (у плодов также ХСМ), глюкокортикоиды, АКТГ и родственные ему гормоны — стимуляторы липолиза в жировой ткани и печени. Глюкагон и адреналин реализуют свои гиперлипацидемические эффекты посредством активации аденилатциклазы и усиления образования цАМФ, который повышает с помощью цАМФ-зависимой ПК, превращение липазы в активированную липазу а (Роюизон и др., 1971). Видимо, аналогичным образом действуют на липолиз АКТГ, липотропин и МСГ, СТГ (или его липолитический фрагмент) и глюкокортикоиды, и также ХСМ усиливают липолиз, вероятно, стимулируя синтез белков-ферментов на уровне транскритщии и трансляции (Фэйн, Синерстейн, 1970).

Латентный период повышения уровня НЭЖК в крови под влиянием глюкагона и адреналина составляет 10-20 мин, под влиянием же СТГ и кортикостероидов — 1ч или более. Следует напомнить, что АКТГ оказывает сложный эффект на липидный обмен. Он действует на жировую ткань непосредственно и через стимуляцию продукции глюкокортикоидов корой надпочечников, являясь, кроме того, прогормоном а-МСГ и срактора, стимулирующего секрецию инсулина (Белофф-Чэйн и др., 1976). Липолитическим эфсректом обладают также Тз и Т4.

Гормональная стимуляция липолиза в адипозной ткани и печени в условиях голодания или стресса и последующая гиперлипацидемия приводят не только к повышению оксиления НЭЖК, но и к торможению утилизации углеводов в мышцах и, возможно, других тканях. Тем самым глюкоза «сохраняется» для мозга, который предпочтительно утилизирует углеводы, а не жирные кислоты. Кроме того, значительная стимуляция липолиза в жировой ткани гормонами повышает образование кетоновых тел из жирных кислот в печени. Последние же и прежде всего ацетоуксусная и оксимасляная кислоты могут служить субстратами дыхания в мозге (Хокинс и др., 1971).

Другим интегральным показателем липидного обмена являются липопротеиды (ЛП) различной плотности, транспортирующие холестерин и другие липиды от печени к другим тканям и наоборот (Браун, Голдстейн, 1977-1985). ЛП низкой плотности — атерогенные (вызывающие атеросклероз), ЛП высокой плотности — антиатерогенные. Биосинтез холестерина в печени и метаболизм различных ЛП регулируются Тз, глюкокортикоидами и половыми гормонами. При этом Т3 и эстрогены предотвращают развитие атеросклероза сосудов.

Адаптивная роль гормонов, регулирующих межуточный метаболизм, и краткие сведения о его эндокринной патологии.

Уровень секреции комплекса гормонов, регулирующих углеводный и жировой метаболизм, находится в зависимости от потребностей организма в энергетических ресурсах. При голодании, мышечной и нервной нагрузке, а также других формах стресса, когда возрастает потребность в использовании углеводов и жиров, в здоровом организме происходит повышение скорости секреции тех гормонов, которые повышают мобилизацию и перераспределение запасных форм питательных веществ и обусловливают гипергликемию и гиперлипацидемию (рис. 100).

Одновременно при этом тормозится секреция инсулина (Хуссэй, 1963; Фоа, 1964, 1972). И, наоборот, прием пиши стимулирует преимущественно секрецию инсулина, который способствует синтезу гликогена в печени и мышцах, триглицеридов в адипозной ткани и печени, а также белка в разных тканях.



Рис 100. Участие гормонов в регуляция и саморегуляции межуточного углеводного и липидного обмена:
сплошными стрелками обозначена стимуляция, прерывистыми — торможение


Сигналами, стимулирующими секрецию инсулина, являются увеличение концентраций всасываемых в кровь глюкозы, жирных кислот и аминокислот, а также усиление секреции гормонов желудочно-кишечного тракта — секретина и панкреозимина. При этом секреция гормонов «мобилизации» тормозится. Однако СТГ, присутствуя даже в небольших концентрациях в крови на стадиях приема пищи, способствует поступлению глюкозы и аминокислот в мышечную и жировую ткани, а адреналин — в мышечную ткань. В то же время невысокие концентрации инсулина при голодании и стрессе, стимулируя вхождение глюкозы в мышцы, облегчают тем самым эффекты гипергликемических гормонов на мышечную ткань.

Одним из главных сигналов, модулирующих секрецию инсулина, глюкагона, адреналина и других гормонов, участвующих в адаптивной саморегуляции межуточного обмена углеводов, является, как уже отмечалось, уровень глюкозы в крови.

Повышение концентрации глюкозы в крови стимулирует по механизму обратной связи секрецию инсулина и тормозит секрецию глюкагона и других гипергликемических гормонов (Фоа, 1964, 1972; Рэндл, Хэйлс, 1972). Показано, что эффекты глюкозы на секреторную активность а- и /5 -леток поджелудочной железы, а также хромаффинных клеток являются в значительной степени результатом прямого взаимодействия гексозы со специфическими рецепторами мембран железистых клеток.

Вместе с тем эффекты глюкозы на секрецию других гормонов реализуются на уровне гипоталамуса или/и вышележащих отделов головного мозга. Аналогично глюкозе на поджелудочную железу и мозговой слой надпочечников, но не на головной мозг, по-видимому, могут действовать и жирные кислоты, обеспечивая саморегуляцию жирового обмена. Наряду с факторами саморегуляции секреции вышеуказанных гормонов на последнюю могут оказывать влияние многие внутренние н внешние стрессорные агенты.

С глубокими нарушениями углеводного и жирового обмена у человека связана тяжелейшая эндокринная болезнь — сахарный диабет. Одним из закономерных осложнений диабета является поражение мелких и крупных сосудов, что создает предпосылки у больных к развитию атеросклероза и других сосудистых нарушений. Таким образом, диабет способствует пополнению числа лиц, страдающих сердечно-сосудистыми заболеваниями.

Предполагали, что развитие сахарного диабета первично сопряжено с абсолютной инсулиновой недостаточностью. В настоящее время считают, что в основе патогенеза диабета лежит сочетанное нарушение регулирующего действия инсулина и, возможно, ряда других гормонов на ткани, в результате чего в организме возникает абсолютная или относительная недостаточность инсулина, сочетающаяся с абсолютным или относительным избытком глюкагона или других «диабетогенных» гормонов (Унтер, 1975).

Дисбаланс действия гормонов приводит соответственно к развитию устойчивой гипергликемии (концентрация сахара в крови выше 130 мг%), глюкозурии и полиурии. Последние два симптома и дали название заболеванию — сахарное мочеизнурение, или сахарный диабет. В условиях углеводной нагрузки (тест толерантности к глюкозе) гликемическая кривая у больных изменена: после приема 50 г глюкозы внутрь гипергликемия у больных по сравнению с нормой растянута во времени и достигает больших величин.

Наряду с нарушением утилизации и депонирования углеводов при диабете возникают соответствующие расстройства жирового обмена: усиление липолиза, торможение липогенеза, увеличение содержания НЭЖК в крови, повышение окисления их в печени, накопление кетоновых тел. Повышенное образование кетоновых тел (кетоз) приводит к снижению рН крови — ацидозу, который играет существенную роль в развитии заболевания (Ренолд и др., 1961).

Кетоацидозу принадлежит, вероятно, видное место в развитии поражений сосудов (микро- и макроангиопатий). Кроме того, кетоацидоз лежит в основе одного из наиболее тяжелых осложнений диабета — диабетической комы. При очень высоком содержании сахара в крови (800-1200 мг%) может развиться другого рода коматозное состояние. Оно возникает вследствие значительной потери с мочой воды и повышения осмотического давления крови при сохранении нормального ее рН (гиперосмолярная кома).

В результате длительных н разнообразных нарушений углеводного, жирового и белкового обменов, сопровождающихся нарушениями водно-солевого баланса, у больных развиваются разнообразные микро- и макроангиопатий, вызывающие заболевания сетчатки (ретинопатия) , почек (нефропатия), нервной системы (нейропатия), трофические язвы на коже, общий атеросклероз, психические расстройства.

Установлено, что сахарный диабет — полипатогенетическое заболевание. Оно исходно может быть обусловлено: первичной недостаточностью секреции инсулина и гиперсекрецией диабетогенных гормонов (инсулинчувствительные, или ювенильные, формы диабета); резко сниженной чувствительностью тканей-мишеней к инсулину (инсулинрезистентные формы, или «диабет пожилых, тучных»). В патогенезе первой формы болезни, составляющей 15-20% больных диабетом, определенную роль могут играть наследственный фактор и образование аутоантител к белкам островкового аппарата. В развитии второй формы заболевания (более 80% лиц, страдающих диабетом) существенное значение имеет избыточной прием углеводной пищи, ожирение, неподвижный образ жизни.

Для компенсации сахарного диабета применяют в качестве заместительной терапии различные препараты инсулина; малоуглеводную (иногда маложировую) диету и сахароснижающие синтетические препараты — сульфанилмочевинные и бигуанидные. Соответственно инсулин эффективен лишь при инсулинчувствительных формах заболевания. Кроме того, ведутся попытки создания «искусственной поджелудочной железы» — компактного электронно-механического аппарата, заряженного инсулином и глюкагоном, который при соединении с кровеносным руслом может вводить гормоны в зависимости от концентрации глюкозы к крови.

Симптомы сахарного диабета могут возникать и при ряде других заболеваний, первично не связанных с эндокринными функциями поджелудочной железы или действием инсулина и глюкагона (разные формы гиперкортицизма, акромегалия).

В.Б. Розен

    Дайте определение понятию стресс, перечислите фазы стресса.

    Объясните, почему стресс называется «общим адаптационным синдромом»

    Назовите стресс-реализующие гормональные системы.

    Перечислите важнейшие гормоны, участвующие в развитии общего адаптационного синдрома.

    Перечислите основные эффекты гормонов, обеспечивающие кратковременную адаптацию, объясните механизм.

    Объясните понятие «системный структурный след адаптации», какова его физиологическая роль?.

    Эффекты какого гормона обеспечивают долговременную адаптацию, каковы механизмы действия этого гормона?

    Перечислите гормоны коры надпочечников.

    Укажите, в чем заключается влияние глюкокортикоидов

на белковый обмен

на жировой обмен

на углеводный обмен

Гормоны в регуляции основных параметров гомеостаза Гормональная регуляция обмена веществ

Когда мы говорим о регуляции всех видов обмена, мы немного лукавим. Дело в том, что избыток жиров приведет к нарушению их обмена и образованию, например, атеросклеротических бляшек, а недостаток к нарушению синтеза гормонов лишь через длительное время. Это же касается и нарушений белкового обмена. Лишь уровень глюкозы в крови является тем гомеостатическим параметром, снижение уровня которого приведет к гипогликемической коме через несколько минут. Это произойдет в первую очередь потому, что нейроны не получат глюкозы. Поэтому, говоря об обмене веществ, в первую очередь обратим внимание на гормональную регуляцию уровня глюкозы в крови, а параллельно остановимся на роли этих же гормонов в регуляции жирового и белкового обмена.

Регуляция углеводного обмена

Глюкоза наряду с жирами и белками является источником энергии в организме. Запасы энергии в организме в виде гликогена (углеводы) невелики по сравнению с запасом энергии, представленной в виде жиров. Так, количество гликогена в организме человека весом 70 кг составляет 480 г (400 г – гликоген мышц и 80 г – гликоген печени), что эквивалентно 1920 ккал (320 ккал-гликоген печени и 1600 – гликоген мышц). Количество циркулирующей глюкозы в крови составляет всего 20 г (80 ккал). Содержащаяся в этих двух депо глюкоза является основным и почти единственным источником питания инсулиннезависимых тканей. Так, головной мозг массой 1400 г при интенсивности кровоснабжения 60 мл/100 г в минуту потребляет 80 мг/мин глюкозы, т.е. около 115 г за 24 часа. Печень способна генерировать глюкозу со скоростью 130 мг/мин. Таким образом, более 60% глюкозы, образующейся в печени, идет на обеспечение нормальной активности центральной нервной системы, причем это количество остается неизменным не только при гипергликемии, но даже при диабетической коме. Потребление глюкозы ЦНС уменьшается лишь после того, как ее уровень в крови становится ниже 1,65 ммоль/л (30 мг%). В синтезе одной молекулы гликогена участвуют от 2000 до 20 000 молекул глюкозы. Образование гликогена из глюкозы начинается с процесса фосфорилирования ее с помощью ферментов глюкокиназы (в печени) и гексокиназы (в других тканях) с образованием глюкозо-6-фосфата (Г-6-Ф). Количество глюкозы в крови, оттекающей от печени, зависит в основном от двух взаимосвязанных процессов: гликолиза и глюконеогенеза, которые в свою очередь регулируются ключевыми ферментами фосфофруктокиназой и фруктозо-1, 6-бисфосфатазой соответственно. Активность этих ферментов регулируется гормонами.

Регуляция концентрации глюкозы в крови происходит двумя путями: 1) регуляция по принципу отклонения параметра от нормальных значений. Нормальная концентрация глюкозы в крови составляет 3.6 – 6.9 ммоль/л. Регуляция концентрации глюкозы в крови в зависимости от ее концентрации осуществляется двумя гормонами с противоположными эффектами – инсулином и глюкагоном; 2) регуляция по принципу возмущения – эта регуляция не зависит от концентрации глюкозы в крови, а осуществляется в соответствии с необходимостью увеличения уровня глюкозы в крови в различных, как правило, стрессирующих ситуациях. Гормоны, увеличивающие уровень глюкозы в крови, поэтому называются контринсулярными. К ним относятся: глюкагон, адреналин, норадреналин, кортизол, тиреоидные гормоны, соматотропин, потому, что единственный гормон, снижающий уровень глюкозы в крови – инсулин (рисунок 18).

Основное место в гормональной регуляции гомеостаза глюкозы в организме отводится инсулину. Под влиянием инсулина активируются ферменты фосфорилирования глюкозы, катализирующие образование Г-6-Ф. Инсулин также повышает проницаемость клеточной мембраны для глюкозы, что усиливает ее утилизацию. При увеличении концентрации Г-6-Ф в клетках повышается активность процессов, для которых он является исходным продуктом (гексозомонофосфатный цикл и анаэробный гликолиз). Инсулин увеличивает долю участия глюкозы в процессах образования энергии при неизменном общем уровне энергопродукции. Активация инсулином гликогенсинтетазы и гликогенветвящего фермента способствует увеличению синтеза гликогена. Наряду с этим инсулин оказывает ингибирующее влияние на глюкозо-6-фосфатазу печени и тормозит, таким образом, выход свободной глюкозы в кровь. Кроме того, инсулин угнетает активность ферментов, обеспечивающих глюконеогенез, за счет чего тормозится образование глюкозы из аминокислот Конечным результатом действия инсулина (при его избытке) является гипогликемия, стимулирующая секрецию контринсулярных гормонов-антагонистов инсулина.

ИНСУЛИН - гормон синтезируется  клетками островков Лангерганса поджелудочной железы. Основной стимул для секреции - повышение уровня глюкозы в крови. Гипергликемия способствует увеличению выработки инсулина, гипогликемия уменьшает образование и поступление гормона в кровь Кроме того, секреция инсулина усиливается под влиянием. ацетилхолина (парасимпатическая стимуляция), норадреналина через -адренорецепторы, а через -адренорецепторы норадреналин тормозит секрецию инсулина. Некоторые гормоны желудочно-кишечного тракта, такие как желудочный ингибирующий пептид, холецистокинин, секретин, увеличивают выход инсулина. Основной эффект гормона – снижение уровня глюкозы в крови.

Под воздействием инсулина происходит уменьшение концентрации глюкозы в плазме крови (гипогликемия). Это связано с тем, что инсулин способствует превращению глюкозы в гликоген в печени и мышцах (гликогенез). Он активирует ферменты, участвующие в превращении глюкозы в гликоген печени, и ингибирует ферменты, расщепляющие гликоген.

Основные энергетические ресурсы живого организма -- углеводы и жиры обладают высоким запасом потенциальной энергии, легко извлекаемой из них в клетках с помощью ферментных катаболических превращений. Энергия, высвобождаемая в процессе биологического окисления продуктов углеводного и жирового обменов, а также гликолиза, превращается в значительной степени в химическую энергию фосфатных связей синтезируемого АТФ. Аккумулированная же в АТФ химическая энергия макроэргических связей, в свою очередь, расходуется на разного вида клеточную работу -- создание и поддержание электрохимических градиентов, сокращение мышц, секреторные и некоторые транспортные процессы, биосинтез белка, жирных кислот и т.д. Помимо «топливной» функции углеводы и жиры наряду с белками выполняют роль важных поставщиков строительных, пластических материалов, входящих в основные структуры клетки, -- нуклеиновых кислот, простых белков, гликопротеинов, ряда липидов и т.д. Синтезируемая благодаря распаду углеводов и жиров АТФ не только обеспечивает клетки необходимой для работы энергией, но и является источником образования цАМФ, а также участвует в регуляции активности многих ферментов, состояния структурных белков, обеспечивая их фосфорилирование.

Углеводными и липидными субстратами, непосредственно утилизируемыми клетками, являются моносахариды (прежде всего глюкоза) и неэстерифицированные жирные кислоты (НЭЖК), а также в некоторых тканях кетоновые тела. Их источниками служат пищевые продукты, всасываемые из кишечника, депонированные в органах в форме гликогена углеводов и в форме нейтральных жиров липиды, а также неуглеводные предшественники, в основном аминокислоты и глицерин, образующие углеводы (глюконеогенез). К депонирующим органам у позвоночных относятся печень и жировая (адипозная) ткань, к органам глюконеогенеза -- печень и почки. У насекомых депонирующим органом является жировое тело. Кроме этого, источниками глюкозы и НЭЖК могут быть и некоторые запасные или другие продукты, хранящиеся или образующиеся в работающей клетке. Разные пути и стадии углеводного и жирового обменов взаимосвязаны многочисленными взаимовлияниями. Направление и интенсивность течения этих обменных процессов находятся в зависимости от ряда внешних и внутренних факторов. К ним относятся, в частности, количество и качество потребляемой пищи и ритмы ее поступления в организм, уровень мышечной и нервной деятельности и т.д.

Животный организм адаптируется к характеру пищевого режима, к нервной или мышечной нагрузке с помощью сложного комплекса координирующих механизмов. Так, контроль течения различных реакций углеводного и липидного обменов осуществляется на уровне клетки концентрациями соответствующих субстратов и ферментов, а также степенью накопления продуктов той или иной реакции. Эти контролирующие механизмы относятся к механизмам саморегуляции и реализуются как в одноклеточных, так и в многоклеточных организмах. У последних регуляция утилизации углеводов и жиров может происходить на уровне межклеточных взаимодействий. В частности, оба вида обмена реципрокно взаимоконтролируются: НЭЖК в мышцах тормозят распад глюкозы, продукты же распада глюкозы в жировой ткани тормозят образование НЭЖК. У наиболее высокоорганизованных животных появляется особый межклеточный механизм регуляции межуточного обмена, определяемый возникновением в процессе эволюции эндокринной системы, имеющей первостепенное значение в контроле метаболических процессов целого организма.

Среди гормонов, участвующих в регуляции жирового и углеводного обменов у позвоночных, центральное место занимают следующие: гормоны желудочно-кишечного тракта, контролирующие переваривание пищи и всасывание продуктов пищеварения в кровь; инсулин и глюкагон -- специфические регуляторы межуточного обмена углеводов и липидов; СТГ и функционально связанные с ним «соматомедины» и СИФ, глюкортикоиды, АКТГ и адреналин -- факторы неспецифической адаптации. Следует отметить, что многие названные гормоны принимают также непосредственное участие и в регуляции белкового обмена (см. гл. 9). Скорость секреции упомянутых гормонов и реализация их эффектов на ткани взаимосвязаны.

Мы не можем специально останавливаться на функционировании гормональных факторов желудочно-кишечного тракта, секретируемых в нервно-гуморальную фазу сокоотделения. Их главные эффекты хорошо известны из курса общей физиологии человека и животных и, кроме того, о них уже достаточно полно упоминалось в гл. 3. Более подробно остановимся на эндокринной регуляции межуточного метаболизма углеводов и жиров.

Гормоны и регуляция межуточного углеводного обмена. Интегральным показателем баланса обмена углеводов в организме позвоночных является концентрация глюкозы в крови. Этот показатель стабилен и составляет у млекопитающих примерно 100 мг% (5 ммоль/л). Его отклонения в норме обычно не превышают ±30%. Уровень глюкозы в крови зависит, с одной стороны, от притока моносахарида в кровь преимущественно из кишечника, печени и почек и, с другой -- от его оттока в работающие и депонирующие ткани (рис. 2).

Приток глюкозы из печени и почек определяется соотношением активностей гликогенфосфорилазной и гликогенсинтетазной реакции в печени, соотношением интенсивности распада глюкозы и интенсивности глюконеогенеза в печени и отчасти в почке. Поступление глюкозы в кровь прямо коррелирует с уровнями фосфорилазной реакции и процессов глюконеогенеза. Отток глюкозы из крови в ткани находится в прямой зависимости от скорости ее транспорта в мышечные, адипозные и лимфоидные клетки, мембраны которых создают барьер для проникновения в них глюкозы (напомним, что мембраны клеток печени, мозга и почек легко проницаемы для моносахарида); метаболической утилизации глюкозы, в свою очередь зависимой от проницаемости к ней мембран и от активности ключевых ферментов ее распада; превращения глюкозы в гликоген в печеночных клетках (Левин и др., 1955; Ньюсхолм, Рэндл, 1964; Фоа, 1972). Все эти процессы, сопряженные с транспортом и метаболизмом глюкозы, непосредственно контролируются комплексом гормональных факторов.

Рис.2. Пути поддержания динамического баланса глюкозы в крови Мембраны мышечных и адипозных клеток имеют "барьер" для транспорта глюкозы; Гл-б-ф -- глюкозо-б-фосфат.

Гормональные регуляторы углеводного обмена по действию на общее направление обмена и уровень гликемии могут быть условно разделены на два типа. Первый тип гормонов стимулирует утилизацию глюкозы тканями и ее депонирование в форме гликогена, но тормозит глюконеогенез, и, следовательно, вызывает снижение концентрации глюкозы в крови. Гормоном такого типа действия является инсулин. Второй тип гормонов стимулирует распад гликогена и глюконеогенез, а следовательно, вызывает повышение содержания глюкозы в крови. К гормонам этого типа относятся глюкагон (а также секретин и ВИП) и адреналин. Гормоны третьего типа стимулируют глюконеогенез в печени, тормозят утилизацию глюкозы различными клетками и, хотя усиливают образование гликогена гепатоцитами, в результате преобладания первых двух эффектов, как правило, также повышают уровень глюкозы в крови. К гормонам данного типа можно отнести глюкокортикоиды и СТГ -- «соматомедины». Вместе с тем, обладая однонаправленным действием на процессы глюконеогенеза, синтеза гликогена и гликолиза, глюкокортикоиды и СТГ -- «соматомедины» по-разному влияют на проницаемость мембран клеток мышечной и адипозной ткани к глюкозе.

По направленности действия на концентрацию глюкозы в крови инсулин является гипогликемическим гормоном (гормон «покоя и насыщения»), гормоны же второго и третьего типов -- гипергликемическими (гормоны «стресса и голодания») (рис.3).

Рис 3. Гормональная регуляция углеводного гомеостаза: сплошными стрелками обозначена стимуляция эффекта, пунктирными -- торможение.

Инсулин можно назвать гормоном усвоения и депонирования углеводов. Одной из причин усиления утилизации глюкозы в тканях является стимуляция гликолиза. Она осуществляется, возможно, на уровне активации ключевых ферментов гликолиза гексокиназы, особенно одной из четырех известных ее изоформ -- гексокиназы П, и глюкокиназы (Вебер, 1966; Ильин, 1966, 1968). По-видимому, определенную роль в стимуляции катаболизма глюкозы инсулином играет и ускорение пентозофосфатного пути на стадии глюкозо-6-фосфатдегидрогеназной реакции (Лейтес, Лаптева, 1967). Считается, что в стимуляции захвата глюкозы печенью при пищевой гипергликемии под влиянием инсулина важнейшую роль играет гормональная индукция специфического печеночного фермента глюкокиназы, избирательно фосфорилирующего глюкозу при высоких ее концентрациях.

Главная причина стимуляции утилизации глюкозы мышечными и жировыми клетками -- прежде всего избирательное повышение проницаемости клеточных мембран к моносахариду (Лунсгаард, 1939; Левин, 1950). Таким путем достигается повышение концентрации субстратов для гексокиназной реакции и пентозофосфатного пути.

Усиление гликолиза под влиянием инсулина в скелетных мышцах и миокарде играет существенную роль в накоплении АТФ и обеспечении работоспособности мышечных клеток. В печени усиление гликолиза, по-видимому, важно не столько для повышения включения пирувата в систему тканевого дыхания, сколько для накопления ацетил-КоА и малонил-КоА как предшественников образования многоатомных жирных кислот, а следовательно, и три-глицеридов (Ньюсхолм, Старт, 1973). Образующийся в процессе гликолиза глицерофосфат также включается в синтез нейтрального жира. Кроме того, и в печени, и особенно в адипозной ткани для повышения уровня липогенеза из глюкозы существенную роль играет стимуляция гормоном глюкозо-б-фосфатдегидрогеназной реакции, приводящей к образованию НАДФН -- восстанавливающего кофактора, необходимого для биосинтеза жирных кислот и глицерофосфата. При этом у млекопитающих только 3-5% всасываемой глюкозы превращается в печеночной гликоген, а более 30% накапливается в виде жира, откладываемого в депонирующих органах.

Таким образом, основное направление действия инсулина на гликолиз и пентозофосфатный путь в печени и особенно в жировой клетчатке сводится к обеспечению образования триглицеридов. У млекопитающих и птиц в адипоцитах, а у низших позвоночных в гепатоцитах глюкоза -- один из главных источников депонируемых триглицеридов. В данных случаях физиологический смысл гормональной стимуляции утилизации углеводов сводится в значительной мере к стимуляции депонирования липидов. Одновременно с этим инсулин непосредственно влияет на синтез гликогена -- депонируемой формы углеводов -- не только в печени, но и в мышцах, почке, и, возможно, жировой ткани.

Адреналин по влиянию на углеводный обмен близок к глюкагону, поскольку механизмом медиации их эффектов является аденилатциклазный комплекс (Робизон и др., 1971). Адреналин, как и глюкагон, усиливает распад гликогена и процессы глюконеогенеза. В физиологических концентрациях глюкагон преимущественно рецептируется печенью и адипозной тканью, а адреналин -- мышцами (прежде всего миокардом) и жировой тканью. Поэтому для глюкагона в большей, а для адреналина в меньшей степени характерны отставленная во время стимуляция глюконеогенетических процессов. Однако же для адреналина в значительно большей степени, чем для глюкагона, типично повышение гликогенолиза и, по-видимому, вследствие этого гликолиза и дыхания в мышцах. В плане не механизмов, а общего влияния на гликолитические процессы в мышечных клетках адреналин является отчасти синерегистом инсулина, а не глюкагона. Видимо, инсулин и глюкагон в большей мере -- гормоны питания, а адреналин -- стрессорный гормон.

В настоящее время установлен ряд биохимических механизмов, лежащих в основе действия гормонов на липидный обмен.

Известно, что длительный отрицательный эмоциональный стресс, сопровождающийся увеличением выброса катехоламинов в кровяное русло, может вызвать заметное похудание. Уместно напомнить, что жировая ткань обильно иннервируется волокнами симпатической нервной системы, возбуждение этих волокон сопровождается выделением норадреналина непосредственно в жировую ткань. Адреналин и норадреналин увеличивают скорость липолиза в жировой ткани; в результате усиливается мобилизация жирных кислот из жировых депо и повышается содержание неэстерифи-цированных жирных кислот в плазме крови. Как отмечалось, тканевые липазы (триглицеридлипаза) существуют в двух взаимопревращающихся формах, одна из которых фосфорилирована и каталитически активна, а другая - нефосфорилирована и неактивна. Адреналин стимулирует через аденилатциклазу синтез цАМФ. В свою очередь цАМФ активирует соответствующую протеинкиназу, которая способствует фосфорилированию липазы, т.е. образованию ее активной формы. Следует заметить, что действие глюкагона на липолитическую систему сходно с действием кате-холаминов.

Не подлежит сомнению, что секрет передней доли гипофиза, в частности соматотропный гормон, оказывает влияние на липидный обмен. Гипофункция железы приводит к отложению жира в организме, наступает гипофизарное ожирение. Напротив, повышенная продукция СТГ стимулирует липолиз, и содержание жирных кислот в плазме крови увеличивается. Доказано, что стимуляция липолиза СТГ блокируется ингибиторами синтеза мРНК. Кроме того, известно, что действие СТГ на липолиз характеризуется наличием лаг-фазы продолжительностью около 1 ч, тогда как адреналин стимулирует липолиз почти мгновенно. Иными словами, можно считать, что первичное действие этих двух типов гормонов на липолиз проявляется различными путями. Адреналин стимулирует активность аденилатциклазы, а СТГ индуцирует синтез данного фермента. Конкретный механизм, с помощью которого СТГ избирательно увеличивает синтез аденилатциклазы, пока неизвестен.

Инсулин оказывает противоположное адреналину и глюкагону действие на липолиз и мобилизацию жирных кислот. Недавно было показано, что инсулин стимулирует фосфодиэстеразную активность в жировой ткани. Фосфодиэстераза играет важную роль в поддержании постоянного уровня цАМФ в тканях, поэтому увеличение содержания инсулина должно повышать активность фосфодиэстеразы, что в свою очередь приводит к уменьшению концентрации цАМФ в клетке, а следовательно, и к образованию активной формы липазы.

Несомненно, и другие гормоны, в частности тироксин, половые гормоны, также оказывают влияние на липидный обмен. Например, известно, что удаление половых желез (кастрация) вызывает у животных избыточное отложение жира. Однако сведения, которыми мы располагаем, не дают пока основания с уверенностью говорить о конкретном механизме их действия на обмен липидов.

В гормональной регуляции обмена белков участвуют гормоны щитовидной железы тироксин (Т3) усиливает синтез белков; Высокие концентрации Т3 наоборот, подавляют синтез белка; гормон роста, инсулин тестостерон, эстроген усиливают распад белков, особенно в мышечной и лимфоидной тканях, но стимулируют синтез белков в печени.

Регуляция водно-солевого обмена происходит нервно-гормональным путём. При изменении осмотической концентрации крови возбуждаются специальные чувствительные образования (осморецепторы), информация от которых передаётся в центр, нервную систему, а от неё к задней доле Гипофиза. При повышении осмотической концентрации крови увеличивается выделение антидиуретического гормона, который уменьшает выделение воды с мочой; при избытке воды в организме снижается секреция этого гормона и усиливается её выделение почками. Постоянство объёма жидкостей тела обеспечивается особой системой регуляции, рецепторы которой реагируют на изменение кровенаполнения крупных сосудов, полостей сердца и др.; в результате рефлекторно стимулируется секреция гормонов, под влиянием которых почки изменяют выделение воды и солей натрия из организма. Наиболее важны в регуляции обмена воды гормоны вазопрессин и глюкокортикоиды, натрия -- альдостерон и ангиотензин, кальция -- Паратиреоидный гормон и кальцитонин.



Похожие статьи